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In the general case of a binary mixture of diatomic molecules, relaxation of the initial nonequilibrium
vibrational energy distribution is accomplished by way of various elementary processes (see, for example,
[1]}: vibration—vibration (V—V) exchange between molecules of the same kind, vibration—vibration (Vv—=V?)
exchange between molecules of different kinds, and vibrational —translation (V—T) exchange. The solution of
the kinetic problem, formulated in quantum statistics, is extremely difficult even with the help of powerful
modern computational devices because of the necessity of including multiquanta transitions, and in the case
of a mixture of molecules with different principal vibrational frequencies, these transitions can be dominant.

In [2] a diffusion description of vibrational relaxation is given for a two-component system of anharmonic
oscillators with the fundamental vibrational frequencies of the components of the mixture being arbitrary. The
solution of a kinetic equation, i.e., a rigorous kinetic analysis, is not carried out in [2].

The kinetic problem is simplified considerably, while still retaining all of the basic features of the pro-
cess, in the case of relaxation of a dilute mixture of nonequilibrium impurity molecules of one kind in a reser-
voir of molecules of another kind. This system turns out to be convenient for comparing the roles of V—V!,
V—V, and V—T exchange processes for different values of the ratio of the fundamental vibrational frequencies
W=wp/wy and different values of the adiabatic parameter ¢y =wyTint Wy, @y, are the principal vibrational
frequencies of the impurity molecules and reservoir molecules, respectively; 7i,t is the characteristic inter-
action time of the molecules). This type of nonequilibrium system is realized in practice either under the
action of a source of excited molecules (optical or chemical excitation), or in a mixture of a small amount of
heated (cooled) gas with another cooled (heated) gas serving as the reservoir.

In the present paper, which is an extension of [2, 3], we study the relative importance of V—V* and V=T
exchange processes as dependent on the parameters W and ¢;. The kinetic mechanisms of vibrational relaxation
are considered for a dilute mixture of a nonequilibrium impurity gas in a Boltzmann reservoir for W#1 (.e.,

a two~component system) over a wide range of values of W,

1. Kinetic Equation. The process of vibrational relaxation in a two~component system of classical os-
cillators is described by the following pair of equations [2]:
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where t is the time, £ is the vibrational energy, f0 is the equilibrium distribution function; ¢i;(e, ¢’ ) = fi(e, £)

I & 0I7 &) (s B = <A S i Bl = i%:—>, A, At are the changes in the vibrational energies £ and &' of the
first and second colhsmn partners, { ...) denotes an average with respect toall collision parameters; Tp is is
the time of a mean free path for molecules of type i in an atmosphere of molecules of type j. Equation (1.1)
must be supplemented by the following boundary conditions derived from the constancy of the number of par-

ticles
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and also the initial conditions fj(e, 0) =¥;(€). Here D; is the dissociation energy of the i-th components.
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In (1.1) terms with i=j describe interactions of molecules of a single kind with each other (V—V and
V~—T exchanges), while terms with i =] refer to interactions between molecules of different kinds (V—V' and
V—T exchanges).

If the molecules of type 1 are out of equilibrium with respect to vibrational energy and form a weak im~

purity in a reservoir of molecules of type 2 @, &', t)EfO (€")), then the second equation in (1.1) reduces to an
identity and the first, after ingetration with respect to €' takes the form

T = |BOre ) 1.2)

where the index 1 is omitted. The function B) denctes an average of the coefficient B}% €, ") with respect
to the nonequilibrium distribution of the reservoir

e (1.3)
B(e)={ Bl ¢)f(e)de.
. [i]
The boundary conditions take the form
[paregun) =o (1.4)
£==0, ’
z=D1

We consider initial conditions of two different types: (1) a Boltzmann distribution with temperature Ty; and
(2) a strong inversion distribution of the form f(&, 0)=C exp[—p (a—smax)z], where £y, defines the maximum
of the distribution and p and C are constants.

2. System of Harmonic Oscillators. In a two-component system of harmonic oscillators, it is necessary
to take into account with multiquanta V—V? exchange processes, as these can play an important role when
‘W21, It can be shown [4] that in a system of harmonic oscillators with multiquanta transitions, the kinetic
coefficient B has the form

B(z) = D} n2>1 -% (z = e/Dy). @.1)

Here we let 7., be the characteristic times of n-quanta vibrational exchange, such that for n=1 we have 1/7,=

T, , VV e s .
1/‘1',V +1/7y ', where the characteristic times of single-quantum V—T exchange and n-quanta V—V!' exchange

are determined from the relations:
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Here n and m are the numbers of quanta received or transmitted by the impurity and reservoir molecules,
respectively. We have introduced the following notation; Tps time of a mean free path (collision time) for the
impurity molecules; M, reduced mass of the colliding molecules; u;, reduced mass of molecules of the i~th
kind; @ =D,/kT; k, Boltzmann constant, T, equilibrium temperature; f; = og;} n;/2D;; myi, m,i, masses of the
atoms comprising a molecule of the i-th kind; Aj= @m}i +m;)/ tmyj +my;)?; 1/a, characteristic interaction range
of the intermolecular potential. Finally the function @ is given hy

8 V_g_ y7/a exp (__ 3y2/3), y>1,

D(y) = yzj‘e_z esch?(y/ V) dz o .
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Equation (1.2) with the coefficient B given by (2.1) does not have the property of canonical invariance be-
cause of the presence of nonlinear terms in x in €.1) from multiquanta V—V!' exchange processes. The relax-
ationprocess of the average energy cannot be described by a single relaxation time. % can be shown, however,
that in the near—~equilibrium stages of the process, i.e., when t —», the system relaxes according to an expo-
nential law with a relaxation time determined by the following relation [4]:
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Relations between the relaxation times of the different vibrational exchange process (V—T and n-quanta
V~—V!) are determined by the values of W and £;,. The importance of V—V' exchange increases with increasing
£o and the range of values of W for which V—V!' exchange dominates expands. We analyze the following cases
for determining the relative importance of the various elementary processes as dependent upon the values of
W and £,: for arbitrary W and £,<5, and also for W< 1/3 or W > 3 and arbitary ¢;, V=T exchange is dominant
with respect to rate, i.e., TVT<‘TI,YV9 and 'rhu'rVT; for 1/32W €3 with £,3 10, V=V exchange dominates, while
for 1/3 €W¢< §/2 the fastest of the V—V' exchange processes is single~quantum exchange, i.e., 7'1VV'<1-VT, TIYVE
and T, & Ty

3. System of Anharmonic Oscillators. Dependence of B(x), In [2] formulas for the kinetic coefficients B;g
are given for the general case of arbitrary intermolecular and intramolecular potentials. In the case of an
exponential repulsive intermolecular potential and a Morse intramolecular potential, after performing the inte-
gration indicated in (1.3) and averaging over different orientations of all colinear collisions we have

B (5, &, W) = Byr (¢, &) + By (2, &, W) = @.1)
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and 7 VY =y ThDeB ¢/ AiAQMkTOAz is of order of the characteristic time of V=V exchange of the impurity oscilla-
tors. Tnthe case of a single component system we have W=1, 7, =T(, TV " =¥V, o=77T/ VT + Tyv) and (3.1)

reduces to the corresponding result in [3].

The first and second terms in (3.1) describe V—T and V—V' exchange processes. The indices nand m
refer to the number of quanta received or transmitted as a result of collisions by the impurity and reservoir
oscillators, respectively. When D,/kT>1 the factor exp (—D,x'"/kT) is rapidly falling with increasing x and we
can therefore calculate Fyy, approximately for values x'« 1, Expanding VI=xT"in a power series in x' and
cutting off the series at the first term, and also using the approximate expression for & we obtain after inte-

ation —
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for &in)'1 —z — mW| > 1.

With study of the dependence of the coefficient B(x, £;, W) one can make some qualitative deductions on
the influence of anharmonicity on the kinetics of vibrational relaxation without directly solving (1,2).

The nature of the interaction of the impurity and reservoir molecules is mainly determined by the adiabatic
parameter £, and the value of W. There exists a relation between £y and a: & =&}V a, & = 251 V M/u,. The
values of W and ¢{ depend on the specific system; their values for some actual mixtures are given in Table 1.

The effectiveness of V—T exchange depends weakly on the nature of the reservoir and is mainly deter-
mined by the value of ¢,. It falls rapidly with increasing &, while for fixed £, it increases (more strongly as
%, increases) with increasing molecular excitation x.



TABLE 1

Xi—~X, “3 Eg X—X 1 Sg
B B
1,—N, 11 0,60 || Ny—HF 1,75 | 1,75
Cl,—N, 4475 1,39 | F,—0, 174 ] 2.6
0,—HF 2,62 1,47 || NO—HCL 1,57 | 2,41
F,—N, 2,55 | 1,86 | 0,—N, 1,49 | 242
NO—HF 247 | 1,63 | NO—N, 1,24 | 2,25
0,—HCl 1,9 | 249 | CO—N 1,09 | 2.43
CO—HF 1,9 1,57 | HF—N, "0.57 | 5,00
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It follows from (3.2) that V—V! exchange reaches resonance when the condition
V1 =z —mW =0, 3.4)

is satisfied, and this determines what energy ranges play a part in resonant V-V transitions. From (3.4) it
follows that for low enough reservoir temperatures (0,/kT>1), anharmonic vibrations of the reservoir mole~
cules are not significant. ¥ can be shown that V—V!' exchange of n quanta of an impurity molecule by m quanta
of a reservoir molecule is nearly resonant in a certain neighborhood of the point x5 =1~ mW/ n)? and the
width of this neighborhood is determined by the formula é=6mW/n’t,, from which it follows that the width of
the resonant peak of the function Byyy, is inversely proportional to the square of the number of quanta trans-
mitted by an impurity molecule and directly proportional to the change in the number of quanta of reservoir
molecules; the larger the value of £;, the narrower the resonant peak of Byyi. From (3.1) to (3.3) it follows
that the effectiveness of V—V! transitions @ccompanied by the exchange of n quanta of the impurity for m
quanta of the reservoir) falls much more rapidly with increasing m than with increasingn.

The importance of anharmonicity in V—V! exchange increases with increasing £, and strongly depends
on W. In Fig. la~1d we have plotted the behavior of B(x)=B(x)Th/D%with £p=30 and W =2, 3/2, 2/3, 1/2. The
curves labeled 1 correspond to harmonic oscillations, curves labeled 2 (BVV,) and 3 (EVT) correspond to an-
harmonic oscillations. For integral values of W=1, 2,... the exchange is exactly resonant in the case of
harmonic oscillators because (3.4) is satisfied for m=1 and n=1, 2...in this case (x<< 1). Anharmonic molec-
ular vibrations for integral W lead to violation of the resonance condition (3.4) and to a decrease in the effective-
ness of V—V! exchange which becomes more pronounced the less closely (3.4) is satisfied (see curves 1 and 2
in Fig. 1la). In the case of nonintegral values of W, the V—V?* exchange for harmonic oscillations can be strongly
nonresonant. The anharmonicity in this case leads to a range of values of x for which the resonant condition
will be satisfied and thus V—V' exchange for anharmonic oscillations will be more effective than V—V?! ex-
change for harmonic oscillations (see curves 1 and 2 of Fig. 1b-d).

We now compare the importance of V=T and V—V!' exchange in a system of anharmonie oscillators for
specific values of W and &y: 1) for arbitrary W and £,% 10 and also for W<1/3 or W > 3 and arbitrary &, V—T
exchange is dominant according to rate; 2) for 1/3€W£3 and £,> 10 it is always possible to partition the energy
into ranges where either V—T or V—V! exchange dominates, For 1/3€W<1 (see Fig. lc, d) single-quantum
V—V! exchange dominates for practically all values of x. When W> 1, V=T exchange dominates V—V' exchange
by only an order of magnitude in the region of high vibrational excitation (see Fig. 1a, b). With increasing ¢,
the importance of V—V' exchange increases and its influence extends in the direction of increasingly higher
values of the excitation energy.

We also point out that when the nonequilibrium gas is a weak impurity, multiquanta V=—V?' exchange be--
comes very important for W> 1. For example when W =2 (see Fig. 1a) it is necesgsary to include the exchanges
2=1 (2 quanta of the impurity for 1 quanta of the reservoir) and 3—1, When W< 1 the exchange 1~—1 dominates
other V—V!' exchanges.
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Relaxation of the Distribution Function., The kinetic equation (1.2) with the boundary conditions (1.4) was
solved numerically over wide ranges of values of W and £;. Particular attention was devoted to the ranges
1/3€ WZ3, £,> 10, where V—V!' exchange is either significant or dominating. V~—V exchange W =1, a single-
component system) has been studied in detail in [3]; V=T exchange has been studied in [5], As a time scale
for the process, we use T, the relaxation time of the average energy in a system of harmonic oscillators).
This time scale is convenient for studying the effect of anharmonicity on the kinetics of the process. In appro-
priate limiting cases, Ty reduces to Tj used in [3, 5].

In Figs. 2 and 3 we plot the molecular vibrational energy distribution function f(x, 7 ) where 7 =t/'rt1 and
the vibrational temperature

Ty(z, v) = —Dy/k[d In j(z, 1)/0z]-

for £y=30, Dy/kT, =7 and D;/kT=40 at different times during decay of the initial Boltzmann distribution. Figure
1a refers to W =2, curves 1-5 refer to the following values of 7: 2.3-1073, 2,4°1072, 4.8; 2.4 - 10!, 1.25 - 102,
Figure 1b refers to W=3/2 with curves 1-4 labeling the following values of 7: 107% 107%; 1072; 2. Figure lc
refers to W =2/3 with curves 1-4 referring to the following values of 7: 3°107% 3+107% 3+107%; 3+1071, Finally
Fig. 1d refers to W =1/2 with curves 1-6 labeling the following values of 7: 2.5°107% 2,5-1072; 2.5; 1,25+ 10%;
6.25°10%; 6.5 101,

Relaxation of the distribution function for different values of W have some common features. Inthe cases
of the most effective vibrational exchange (near-resonant V—V! exchange and V—T exchange for large x), after
atime of order of the characteristic time for these processes, a quasi-Boltzmann distribution with Ty > T is
established; however the population density exceeds that in the equilibrium case.

For example, with W=2 (see Fig. 2a, 3a) the various vibrational exchange processes can be arranged in
order of decreasing rate as follows: For x> 0.7 the fastest process is. V—T exchange so that after a time
T~21072 5 quasi-Boltzmann distribution is established with Ty~ T (curves 2~ -5). The next fastest process
is near-resonant V—V' exchange 3—1 (3 impurity quanta for 1 reservoir quantum) so that for 0.5€x40.6 a
quasi-PBoltzmann distribution is formed with Ty ~ T after a time of order 7 ~2- 107!, Then follow two pro-
cesses with practically the same rates; nonresonant V—V!' exchange of type 3—1 and V—T exchange for 0.6¢
%% 0.7 in which excess molecules with upper repopulated levels "diffuse® into lower energy ranges with a re-
laxation time of order 7 ~20 (curve 4). During a time of about the same order T ~ 25, near-resonant V—V!'
exchange of type 2 —1 causes a quasi~Boltzmann distribution to be established in the low-energy region (x<
0.15). The slowest process is that of nonresonant V—V* exchange of types 3—1 and 2—1 for 0.15¢x<0.35 and
these determine the time 7 > 10% to establish complete equilibrium (curve 5).

For W=3/2 (see Fig. 2b, 3b) the fastest process is V—T exchange for x » 0,7 and near-resonant V—V!
(2—1) exchange for 0.3€x%£0.5 and as a result of a quasi-Boltzmann distribution is formed in these energy
ranges after a time of order 7 ~1072, Next in order of decreasing rate are the near-resonant V—V!' exchanges
of types 2—1 and 3—1 and V—T exchange for 0.5<x< 0.7 with the relaxation time v ~2+107!, The slowest pro-
cess in this case is that of strongly nonresonant V—V' exchange of type 2—~1 for x£ 0.2 with characteristic
time 7> 2.

For 1/3€W <1 the most important of the V—V! processes is single-quantum 1~1 exchange, along with it
a greater or lesser role (depending on the specific values of W and £) is played by V—T exchange, For ex-
ample, when W =2/3 (see Fig. 2c, 3c¢) after a time of order 723 -107% in the region0.4€x< 0,6 (near-resonant
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V~—V! exchange of type 1—1) and x> 0.8 (V—T exchange) a quasi~Boltzmann distribution is established with .
temperature T; the time to establish complete equilibrium (~3-1071) is determined by nonresonant V—V!
exchange for small x and also V—T exchange for x~0.6. With increasing W the region where single-quan-
tum exchange is important is shifted toward larger x. For example, when W=1/2 (see Fig. 2¢, 3d) single-
quantum V—=V* exchange results in a quasi~Boltzmann distribution with temperature T for x » 0.5 after atime
of order 7~2.5; as the time increases this range is widened in the direction of increasingly lower energies.

The relaxation process of the distribution function for an initial inversion distribution in the case W =1
(single-component system) has been worked out in [3]. When W #1 this process occurs in an analogous fashion;
the relaxation mechanisms are determined principally by the value of Xmin &t which B&) reaches a minimum
(or minima) and also the value Xmax which defines the maximum of the initial distribution Xmax = Emax/D-

Application of our results to the case of a completely noneguilibrium binary mixture, i.e., when the non-
equilibrium component of the mixture cannot now be treated as a weak impurity allows one to make some quali~
tative conclusions. Inthis system the following cases can occur, depending on the actual values of W and &,:

1) TIVV’ TzVV« Tyv! ST yT ('r‘VV is the characteristic time of single~quantum V—V exchange for the i-th com-

ponent). In this case in the low energy range, after a time of order +£10 [3] Trinorov distributions are es-
tablished for each of the components. Then after a time of order myy:- "mixing" of quanta between the com~
ponents occurs [1]. For W=38/2, £,=30 and in the low energy region (;"VV' ~TyT) the "mixing" occurs so slowly
that each of the components will have its own Trinorov distribution until complete equilibrium is established;

2) TiVV'”TzVV”TVV'- In the general case of multiquanta V~V' exchange the Trinorov distribution of each of

the components will not occur because of nonconservation of the number of quanta. For the example W=2 in
the low energy region, as a result of cooperative action of these three processes, after a time of order 7 ~ 25
quasi-Boltzmann distributions with Ty = T will be established for each of the components at low energy.

Relaxation of the Average Energy. As in the case of a single~-component system [3] (see also [5]) we
define the time-dependent relaxation time of the average energy as

Te= —{dIn [E(f) — E(co)l/dt}-1.

In order to describe the effect of anharmonic molecular vibrations on the relaxation of E ) we define gft) =
Tot)/Th-
If V=T exchange dominates with respect to rate ((;<10 and arbitrary W, or W<1/3, W > 3 and arbitrary

£9), then the behavior of g ¢) is qualitatively determined by the same mechanisms as in the case of dilute mix~
ture of diatomic molecules in an inert gas medium; this has been studied in detail [5].

For 1/32W<3 and £,5 10, i.e., when vibration—vibration exchange processes are important, the presence
of a minimum (minima) in Bx) leads to radical complication of the behavior of g ¢) as a function of ¢, W, and
the initial conditions. I particular, g depends on the initial conditions ¢he initial population density of the
region x5 gy ip) during practically the entire relaxation process. Figure4 shows the dependence of g on 1=
t/7y, for fixed initial conditions (an initial Boltzmann distribution with Dy/kTy="7, £, =30, D;/kT =40) and for
different values of W within 1/3 ¢W<3 (W=2, 3/2, 2/3, 1/2, 1 correspond to curves 1-5, respectively). The
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effect of anharmonicity is seen in the strong dependence of g on 7; in all cases considered g increases mono-
tonically and changes by one or two orders of magnitude during the relaxation process. 1 is clear from Fig. 4
that, depending on W and the degree of deviation of the system from equilibrium, both the case 7, <7h fanhar-
monicity leads to an acceleration of the process) and 74 > Ty (anharmonicity leads to a slowing of the process)
can occur. For integral values of W such as W=2 {(curve 1) and W=1 (curve 5), To > 7p, during the entire pro-
cess. Eut when W =3/2, 2/3 and 1/2 (curves 2, 3, 4, respectively we have 7o <7Th initially when the high-energy
region is significantly populated and B> By; as time increases to the point where most of the molecules are
now found in the low-energy region with B< By, the relaxation process is slowed and 7¢ > 7.

We estimate the relaxation time of the average energy in the limit 7 —o, Because the relaxing system
is close to equilibrium, we can use the approximation

fle, t) = [1/E(t)] exp [—e/E()]. {3.5)

Substituting (3.5) into (1.2), we obtain an equation which describes the relaxation of the average vibrational
energy of the nonequilibrium impurity in the limit 7 —eo;

dE@)/dt = (kT — E(t)/re (o),

where
Dy
7o (00) = (kT) | B (&) P°(®) de. (3.6)
0

Equation (3.6) correctly describes the behavior of 7, (0} as a function of W and £,.

In conclusion, we summarize the basic features of the effect of anharmonicity on the kinetics of vibra-
tional relaxation in a binary mixture of diatomic molecules. The effect of anharmonicity is determined prin-
cipally by the values of the adiabatic parameter £, and the ratio of fundamental frequencies W. For arbitrary
W and £,£€10 or for W<1/3, W> 3 and arbitrary £, V—T exchange dominates with respect to rate, For 1/3¢
W<£3and &> 10, vibration—vibration exchange becomes important (depending on the excitation energy) and
here the effect of anharmonicity increases with increasing £, and depends on W (for integral values of W the
anharmonicity leads to a decrease in the effectiveness of vibration—vibration exchange, fractional values of W
lead to an increase). The time-dependent relaxation time 7 of the average energy can change during the re~
laxation process by one to two orders of magnitude.
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DEPENDENCE OF THE EFFICIENCY OF A CO,y
GASDYNAMIC LASER (GDL) RESONATOR
ON THE LASING MIXTURE PARAMETERS

G. Ya. Dynnikova UDC 532.525.2

Carbon dioxide gasdynamic lasers are widely studied at this time [1]. Numerous methods for analyzing
the GDL characteristics have been developed, starting with approximate analytical formulas permitting execu-~
tion of some estimates, to numerical methods of solving complex systems of differential equations describing
diverse physical processes. Nevertheless, perfecting the analytical formulas remains urgent. This is related
to the ongoing search to raise GDL efficiency by application and development of new methods to obtain an active
medium, which is related, in turn, to the need to optimize many parameters.

An analytic dependence is obtained in this paper for the limit value of the resonator efficiency (under-
stood here to be the ratio between the number of radiation quanta which have emerged from the resonator and
the number of vibrational quanta accumulated at the upper lasing level and in the nitrogen molecules) as a
function of the characteristics of the active medium at the resonator input with relaxation losses taken into
account in its cavity and without thermodynamic equilibrium between the vibrational modes (a four-tempera~
ture model). The conditions of equality of the total radiation losses and the total amplification for a constant
intensity in the whole resonator volume [2]}

2¢kyd = In (4/r), Q)

is used in the derivation, where (k) = (1/8)f kdS; k is the gain coefficient, S is the area of the generation zone,
r is the effective coefficient of resonator reflection taking into account the losses associated with absorption
in the mirrors and the radiation yield, and d is the thickness of the active medium along the optical axis. An
explicit expression for the power being generated is obtained in [2] withinthe framework of the two-tempera-
ture model. Analysis of this expression and optimization of certain resonator parameters permit limit values
to be obtained for the parameter efficiency o for a given ratio n between the gain of the active medium kyd at
the resonator input and the absorption coefficient & of the mirrors:

o=1-—(1-+Innn. @2)

However, the formula presented in [2] does not correctly indicate the nature of the dependence of the
power of the radiation being generated on the composition of the lasing mixture for instance, its maximal
value is obtained in the absence of water vapor), and on the length of the generation zone, for which the power
grows continuously, according to [2], as it diminishes., This is a result of using the two-temperature model
which is not applicable for large values of the radiation intensity in the resonator anda small relaxation rate
of the lower lasing level, which takes place for a deficiency of vapors. All this results in the need to consider
the four~-temperature model. Linearized equations describing a system in conformity with this model are
represented in [2], and the means to solve the problem are noted. In this paper the solution is executed to
an explicit expression for o and it is analyzed. A system of linear equations analogous to [2] is used

de/dt = Ae + B, (3)
€ = (017 €5, 63): B= (Klel*7 O? 0)1
— (K, + Bd + 3B3K1) B + 3BoK 1,2 0 ,
A= Bl - Kq,:8, — (2 + Bl 4 Ky5) TN ¥
0 zg — (zg -+ TukKs)

where & = 27Ty B = Fytexlze N(e,(0) — o {0V~ K; = wuft, By =28V en; Po=Ven. Here ey, ey, e are
the populations of the vibrational modes of nitrogen, the upper and lower lasing levels in the computation per
molecule of the appropriate species, xg, Xjy, XN are the carbon dioxide gas, water vapor, and nitrogen con~
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